## Math Virtual Learning

 Algebra 1 S2April 23rd, 2020

# Algebra 1 S2 <br> Lesson: April 23rd, 2020 

## Learning Target: <br> Students will solve quadratics using the quadratic formula.

1. Click here to practice the number of solutions for the quadratics given.
*Get four green dots in a row
2. Click here to practice identifying the type of function given.
*Set timers to beat your scores.

In today's lesson we will continue solving quadratics by using the quadratic formula.

Go ahead and click below to get started with today's video.


## Independent Practice

1) $18 x^{2}+2 x-2=9 x^{2}$
2) $3 x^{2}+4 x-3=-7 x^{2}$
3) $8 x^{2}-2=5 x$
4) $10 x^{2}+10=-12 x$
5) $5 x^{2}+10 x-76=8 x-4$
6) $7 x^{2}-11 x+11=6 x^{2}-11$
7) $9 x^{2}+2 x-12=6 x$
8) $x^{2}-x-14=-10$
9) $18 x^{2}+2 x-2=9 x^{2}$

$$
\begin{array}{rl}
18 x^{2}+2 x-2=9 x^{2} \\
-9 x^{2} & -9 x^{2} \\
9 x^{2}+2 x-2=0 & x=\frac{-2 \pm \sqrt{(2)^{2}-4(9)(-2)}}{2(9)} \\
A=9 \quad B=2 \quad C=-2 & \\
& x=\frac{-2 \pm \sqrt{76}}{18} \text { simplifies? } \\
& x=\frac{-2 \pm 2 \sqrt{76}}{18} \\
& x=\frac{-1 \pm \sqrt{19}}{9}
\end{array}
$$

2) $7 x^{2}-11 x+11=6 x^{2}-11$

$$
\begin{array}{ll}
\begin{array}{l}
7 x^{2}-11 x+11=6 x^{2}-11 \\
-6 x^{2} \quad+11-6 x^{2}+11
\end{array} & x=\frac{11 \pm \sqrt{(-11)^{2}-4(1)(22)}}{2(1)} \\
x^{2}-11 x+22=0 & \sqrt{33} \text { doessit } \\
A=1 \quad B=-11 \quad C=22 & x=\frac{11 \pm \sqrt{33}}{2} \quad \begin{array}{l}
\text { simplify } \\
\text { erection is } \\
\text { reduced. }
\end{array}
\end{array}
$$

3) $3 x^{2}+4 x-3=-7 x^{2}$

$$
\begin{aligned}
\begin{array}{rl}
3 x^{2}+4 x-3=-7 x^{2} \\
+7 x^{2} & +7 x^{2} \\
10 x^{2}+4 x-3=0 & \\
A=10 \quad B=4 \quad C=-3 & x=\frac{-4 \pm \sqrt{(4)^{2}-4(10)(-3)}}{2(10)} \\
& x=\frac{-4 \pm \sqrt{136}}{20} \\
& x=\frac{-4 \pm 2 \sqrt{134}}{20} \\
& x=\frac{\sqrt{4} \sqrt{34}}{10} \\
&
\end{array} \text { Reduce by } 2 \\
2 \sqrt{34}
\end{aligned}
$$

4) $5 x^{2}+10 x-76=8 x-4$

$$
\begin{aligned}
& 5 x^{2}+10 x-76=8 x-4 \\
& -8 x+4-8 x+4 \\
& 5 x^{2}+2 x-72=0 \quad x=\frac{-2 \pm \sqrt{(2)^{2}-4(5)(-72)}}{2(5)} \\
& \begin{aligned}
=5=5 \quad B=-72 \quad & x=\frac{-2 \pm \sqrt{1444}}{10} \quad \rightarrow \sqrt{1444}=38 \\
& x=\frac{-2 \pm 38}{10} \quad x=\frac{-2+38}{10}=\frac{36}{10} \quad x=\frac{-2-38}{10}=\frac{-40}{10} \\
& x=18 / 5 \quad x=-4
\end{aligned}
\end{aligned}
$$

5) $8 x^{2}-2=5 x$

$$
\begin{aligned}
& \begin{array}{l}
8 x^{2}-2=5 x \\
-5 x-5 x \\
8 x^{2}-5 x-2=0 \quad x=\frac{5 \pm \sqrt{(-5)^{2}-4(8)(-2)}}{2(8)} \\
A=8 \quad B=-5 \quad C=-2 \\
\begin{array}{r}
x=\frac{5 \pm \sqrt{89}}{18}
\end{array} \\
\text { simplify \& } \\
\text { Fraction is reduced. }
\end{array}
\end{aligned}
$$

6) $9 x^{2}+2 x-12=6 x$

$$
\begin{array}{ll}
9 x^{2}+2 x-12=6 x \\
-6 x \quad & =6 x \\
9 x^{2}-4 x-12=0 & x=\frac{4 \pm \sqrt{(-4)^{2}-4(9)(-12)}}{2(9)} \\
A=9 \quad B=-4 \quad c=-12 & \sqrt{\sqrt{448}} \\
& x=\frac{4 \pm \sqrt{448}}{18} \\
& x=\frac{\sqrt[4]{64 \sqrt{7}}}{18} \\
& x=\frac{2 \pm 4 \sqrt{7}}{9}
\end{array}
$$

7) $10 x^{2}+10=-12 x$

$$
\begin{array}{ll}
10 x^{2}+10=-12 x \\
+12 x+12 x \\
10 x^{2}+12 x+10=D & x=\frac{-12 \pm \sqrt{(12)^{2}-4(10)(10)}}{2(10)} \\
A=10 \quad B=12 \quad C=10
\end{array}
$$

8) $x^{2}-x-14=-10$

$$
\begin{aligned}
& x^{2}-x-14=+10 \\
&+10+10 \\
& x^{2}-x-4=0 \\
& A=1 \quad B=-1 \quad C=-4
\end{aligned} \quad x=\frac{1 \pm \sqrt{(-1)^{2}-4(1)(4)}}{2(1)}
$$

## Additional Practice:

Click on the links below to get additional practice and to check your understanding!

Extra Practice for using the quadratic formula
*Get four green dots in a row
Quizizz for using the quadratic formula.
*You can play the game or use the flashcards to practice.

